Copied to
clipboard

G = C4210D10order 320 = 26·5

10th semidirect product of C42 and D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4210D10, C10.962+ 1+4, C4⋊C444D10, (C4×D20)⋊8C2, (C4×C20)⋊6C22, D10⋊Q84C2, C4.D206C2, C422D53C2, C42⋊D51C2, C22⋊D20.2C2, C42⋊C211D5, (C2×C10).71C24, C4⋊Dic556C22, C22⋊C4.95D10, Dic54D443C2, D10.29(C4○D4), D10.13D44C2, C2.8(D48D10), (C2×C20).146C23, (C2×Dic10)⋊5C22, (C4×Dic5)⋊50C22, (C2×D20).25C22, (C22×C4).192D10, D10⋊C440C22, Dic5.14D44C2, C52(C22.45C24), C23.D5.4C22, C22.18(C4○D20), C10.D432C22, (C23×D5).37C22, (C22×D5).21C23, C23.159(C22×D5), C22.100(C23×D5), C23.23D1027C2, (C22×C20).435C22, (C22×C10).141C23, (C2×Dic5).208C23, (C22×Dic5).88C22, C4⋊C4⋊D54C2, C2.10(D5×C4○D4), (C2×C4×D5)⋊45C22, (C5×C4⋊C4)⋊54C22, (D5×C22⋊C4)⋊26C2, C10.28(C2×C4○D4), C2.30(C2×C4○D20), (C2×D10⋊C4)⋊40C2, (C2×C5⋊D4).9C22, (C5×C42⋊C2)⋊13C2, (C2×C10).41(C4○D4), (C2×C4).274(C22×D5), (C5×C22⋊C4).138C22, SmallGroup(320,1199)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C4210D10
C1C5C10C2×C10C22×D5C23×D5D5×C22⋊C4 — C4210D10
C5C2×C10 — C4210D10
C1C22C42⋊C2

Generators and relations for C4210D10
 G = < a,b,c,d | a4=b4=c10=d2=1, ab=ba, cac-1=dad=ab2, bc=cb, dbd=a2b, dcd=c-1 >

Subgroups: 998 in 248 conjugacy classes, 97 normal (91 characteristic)
C1, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C24, Dic5, C20, D10, D10, C2×C10, C2×C10, C2×C10, C2×C22⋊C4, C42⋊C2, C42⋊C2, C4×D4, C22≀C2, C22⋊Q8, C22.D4, C4.4D4, C422C2, Dic10, C4×D5, D20, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, C22.45C24, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C23.D5, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×D20, C22×Dic5, C2×C5⋊D4, C22×C20, C23×D5, C42⋊D5, C4×D20, C4.D20, C422D5, Dic5.14D4, D5×C22⋊C4, Dic54D4, C22⋊D20, D10.13D4, D10⋊Q8, C4⋊C4⋊D5, C2×D10⋊C4, C23.23D10, C5×C42⋊C2, C4210D10
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2+ 1+4, C22×D5, C22.45C24, C4○D20, C23×D5, C2×C4○D20, D5×C4○D4, D48D10, C4210D10

Smallest permutation representation of C4210D10
On 80 points
Generators in S80
(1 53 13 41)(2 59 14 47)(3 55 15 43)(4 51 11 49)(5 57 12 45)(6 56 16 44)(7 52 17 50)(8 58 18 46)(9 54 19 42)(10 60 20 48)(21 71 31 65)(22 77 32 61)(23 73 33 67)(24 79 34 63)(25 75 35 69)(26 76 36 70)(27 72 37 66)(28 78 38 62)(29 74 39 68)(30 80 40 64)
(1 28 8 23)(2 29 9 24)(3 30 10 25)(4 26 6 21)(5 27 7 22)(11 36 16 31)(12 37 17 32)(13 38 18 33)(14 39 19 34)(15 40 20 35)(41 62 46 67)(42 63 47 68)(43 64 48 69)(44 65 49 70)(45 66 50 61)(51 76 56 71)(52 77 57 72)(53 78 58 73)(54 79 59 74)(55 80 60 75)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 7)(2 6)(3 10)(4 9)(5 8)(11 19)(12 18)(13 17)(14 16)(15 20)(21 39)(22 38)(23 37)(24 36)(25 40)(26 34)(27 33)(28 32)(29 31)(30 35)(41 45)(42 44)(46 50)(47 49)(51 59)(52 58)(53 57)(54 56)(61 73)(62 72)(63 71)(64 80)(65 79)(66 78)(67 77)(68 76)(69 75)(70 74)

G:=sub<Sym(80)| (1,53,13,41)(2,59,14,47)(3,55,15,43)(4,51,11,49)(5,57,12,45)(6,56,16,44)(7,52,17,50)(8,58,18,46)(9,54,19,42)(10,60,20,48)(21,71,31,65)(22,77,32,61)(23,73,33,67)(24,79,34,63)(25,75,35,69)(26,76,36,70)(27,72,37,66)(28,78,38,62)(29,74,39,68)(30,80,40,64), (1,28,8,23)(2,29,9,24)(3,30,10,25)(4,26,6,21)(5,27,7,22)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35)(41,62,46,67)(42,63,47,68)(43,64,48,69)(44,65,49,70)(45,66,50,61)(51,76,56,71)(52,77,57,72)(53,78,58,73)(54,79,59,74)(55,80,60,75), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,7)(2,6)(3,10)(4,9)(5,8)(11,19)(12,18)(13,17)(14,16)(15,20)(21,39)(22,38)(23,37)(24,36)(25,40)(26,34)(27,33)(28,32)(29,31)(30,35)(41,45)(42,44)(46,50)(47,49)(51,59)(52,58)(53,57)(54,56)(61,73)(62,72)(63,71)(64,80)(65,79)(66,78)(67,77)(68,76)(69,75)(70,74)>;

G:=Group( (1,53,13,41)(2,59,14,47)(3,55,15,43)(4,51,11,49)(5,57,12,45)(6,56,16,44)(7,52,17,50)(8,58,18,46)(9,54,19,42)(10,60,20,48)(21,71,31,65)(22,77,32,61)(23,73,33,67)(24,79,34,63)(25,75,35,69)(26,76,36,70)(27,72,37,66)(28,78,38,62)(29,74,39,68)(30,80,40,64), (1,28,8,23)(2,29,9,24)(3,30,10,25)(4,26,6,21)(5,27,7,22)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35)(41,62,46,67)(42,63,47,68)(43,64,48,69)(44,65,49,70)(45,66,50,61)(51,76,56,71)(52,77,57,72)(53,78,58,73)(54,79,59,74)(55,80,60,75), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,7)(2,6)(3,10)(4,9)(5,8)(11,19)(12,18)(13,17)(14,16)(15,20)(21,39)(22,38)(23,37)(24,36)(25,40)(26,34)(27,33)(28,32)(29,31)(30,35)(41,45)(42,44)(46,50)(47,49)(51,59)(52,58)(53,57)(54,56)(61,73)(62,72)(63,71)(64,80)(65,79)(66,78)(67,77)(68,76)(69,75)(70,74) );

G=PermutationGroup([[(1,53,13,41),(2,59,14,47),(3,55,15,43),(4,51,11,49),(5,57,12,45),(6,56,16,44),(7,52,17,50),(8,58,18,46),(9,54,19,42),(10,60,20,48),(21,71,31,65),(22,77,32,61),(23,73,33,67),(24,79,34,63),(25,75,35,69),(26,76,36,70),(27,72,37,66),(28,78,38,62),(29,74,39,68),(30,80,40,64)], [(1,28,8,23),(2,29,9,24),(3,30,10,25),(4,26,6,21),(5,27,7,22),(11,36,16,31),(12,37,17,32),(13,38,18,33),(14,39,19,34),(15,40,20,35),(41,62,46,67),(42,63,47,68),(43,64,48,69),(44,65,49,70),(45,66,50,61),(51,76,56,71),(52,77,57,72),(53,78,58,73),(54,79,59,74),(55,80,60,75)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,7),(2,6),(3,10),(4,9),(5,8),(11,19),(12,18),(13,17),(14,16),(15,20),(21,39),(22,38),(23,37),(24,36),(25,40),(26,34),(27,33),(28,32),(29,31),(30,35),(41,45),(42,44),(46,50),(47,49),(51,59),(52,58),(53,57),(54,56),(61,73),(62,72),(63,71),(64,80),(65,79),(66,78),(67,77),(68,76),(69,75),(70,74)]])

65 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A···4F4G4H4I4J4K4L4M4N4O5A5B10A···10F10G10H10I10J20A···20H20I···20AB
order12222222224···44444444445510···101010101020···2020···20
size111122101020202···2444101020202020222···244442···24···4

65 irreducible representations

dim11111111111111122222222444
type++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2D5C4○D4C4○D4D10D10D10D10C4○D202+ 1+4D5×C4○D4D48D10
kernelC4210D10C42⋊D5C4×D20C4.D20C422D5Dic5.14D4D5×C22⋊C4Dic54D4C22⋊D20D10.13D4D10⋊Q8C4⋊C4⋊D5C2×D10⋊C4C23.23D10C5×C42⋊C2C42⋊C2D10C2×C10C42C22⋊C4C4⋊C4C22×C4C22C10C2C2
# reps111111111211111244444216144

Matrix representation of C4210D10 in GL6(𝔽41)

100000
010000
0032000
0003200
0000121
0000040
,
4000000
0400000
007400
00293400
000090
000009
,
4070000
3470000
001000
000100
000010
00003740
,
4000000
3410000
001000
00174000
0000400
000041

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,1,0,0,0,0,0,21,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,7,29,0,0,0,0,4,34,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[40,34,0,0,0,0,7,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,37,0,0,0,0,0,40],[40,34,0,0,0,0,0,1,0,0,0,0,0,0,1,17,0,0,0,0,0,40,0,0,0,0,0,0,40,4,0,0,0,0,0,1] >;

C4210D10 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{10}D_{10}
% in TeX

G:=Group("C4^2:10D10");
// GroupNames label

G:=SmallGroup(320,1199);
// by ID

G=gap.SmallGroup(320,1199);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,387,100,675,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a*b^2,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽